Project Reference

Construct tide observation record DB

Inhwan Moon SI Division, KESTI Ltd. (Korea Environmental Science & Technology Institute Inc.)

🔮 (주)환경과획기술

__Contents ;

I. Overview

- 1. Korean Tide Observation
- 2. Background and purpose
- 3. Scope and Schedule
- II. DB construction Steps
- 1. DB Construction Processes
- 2. Step 1 : Scanning
- 3. Step 2 : Digitizing
- 4. Step 3 : Inspection

III. Achievements

[Fig.1] National Marine Observation Network

Tide observation status

- Mokpo is the first tidal station built in 1952 (in Korean war), and now 44 tidal stations are in operation
 - West coast : 19 (Mokpo, Daeheuksando, Youngkwang etc.)
 - South coast : 17 (Busan, Kaduckdo, Masan, etc.)
 - East coast : 8 (Sokcho, Mukho, Ullengdo etc.)
- Both analog and digital tide observation equipment are in use complementary since 2003 at every tidal station.
- Tidal Data can be accessed on the web and the ARS

- Purpose for the Project
- ✓ Construct the basis of various utilization on the tide observation record
- ✓ Digitize One minute value from analog tide record paper
- Background of the Project
- ✓ Needs for a permanent preservation of historical tidal records by Digitization
- ✓ Needs for a historical tide level data Service to the public and the organization.
- ✓ Needs for precise back data for the statistics to trace Sea Level Changes
- \checkmark Needs for improved utilization of tide level data

- Scope of the project
- ✓ Record amount

Coast	No. of Station	Amo	Digitized Data	
		Books	Pages	Count
West Coast	14	254	83,666	120,479,040
South Coast	17	393	134,131	193,148,640

- ✓ 31 Tidal Stations produced 647 books, 217,797 pages(days) of tide records were found
- ✓ Total 1 min. Data : 313,627,680
- Project Terms

✓ July 2009 ~ Dec. 2009 (6 Months)

<u>Contents</u>;

I. Overview

- 1. Korean Tide Observation
- 2. Background and purpose
- 3. Scope and Schedule

II. DB construction Steps

- 1. DB Construction Processes
- 2. Step 1 : Scanning
- 3. Step 2 : Digitizing
- 4. Step 3 : Inspection

III. Achievements

- Preparation of scanning
- ✓ Classification by Paper Size

34 types of paper size were classified by the specification of recording paper.

Code	Size	Code	Size	Code	Size	Code	Size	Code	Size	Code	Size
A0	1189 X 841	Α7	509 X 130	B4	378 X 248	C1	291.8 X 118	С7	35.6 X 23	D4	36 X 25
A1	841 X 594	A8	26 X 11.5	В5	335 X 216	C2	291.8 X 126	С8	34.32 X 24.52	D5	36.22 X 24.54
A2	480 X 350	Α9	299.5 X 140	В6	36.22 X 24.54	C3	291.8 X 130	С9	37 X 65.5	D6	29.18 X 13
A3	480 X 250	B1	570 X 332	B7	26.84 X 18.22	C4	300 X 115	D1	26 X 18	D7	36.22 X 24.54
A4	297 X 210	B2	499.5 X 310	B8	49.5 X 24.5	С5	300 X 120	D2	35 X 24.54		
A6	509 X 186	B3	290 X 150	В9	36.22 X 24.54	C6	304 X 120	D3	45 X 78		

- Type Reclassification by Properties
 - Most used types are A2, A3 (continuous type)

Type classification	Code	Digitizing method	number of type	Amount(day)	%
Large type	A0, A1	 Digitize after downsizing scan file size as the original is too big. 	2	6,688	3.1
continuous type	<mark>A2</mark> , <mark>A3</mark> , A4	 Digitize after securing 24 hours of tide record are included in each page 	3	145,219	66.7
Individual type	A5, A6, A7, A8, B1, B2, B4, B5, B6, B7, B8, B9, C7, C8, C9, D1, D2, D3, D4, D5	 Digitize after assigning the code on handwritten scale and record starting time by pages 	20	55,183	25.3
Y-axis curved type	A9, B3, C1, C2, C3, C4, C5, C6, D6	 Digitize after reconstructing rectangular coordinates by curvature correction of Y-axis curve. 	9	10,107	4.9
Total			34	217,797	100.0

2. Step1 : Scanning

- Scanners Used
- \checkmark 3 types of scanner were used to handle various paper type
- ✓ Overhead, flatbed, Wide format scanner were used

Overhead scanner For continuous type

Flatbed scanner for individual type

Wide format scanner For large type

2. Step1 : Scanning

- Scan Quality inspection
- ✓ Checking Resolution, Scan Range, whether Partial Stain contains

2. Step1 : Scanning

- Image correction
 - According to the scan quality inspection, correct image through Photoshop when needed
 - \checkmark If correction unavailable, send back to Scan

- ✤ Assigning image file name
 - ✓ File name includes : Station name, image rating, error status, paper type code, recording direction, scale, date recorded, recording time begins, etc.
 - \checkmark Meta data can be extracted systematically from the assigned image file name

Goheung _	A 00	_ A3 2 1 _	20041229	-	0000	_	С
tidal station name [–]	File rating + error status	Paper type code + _ Recording _ direction + Scale	YYYYMMDD	_	Record time		Zero point

- Tidal station name : the station where tide recorded
- File rating : A (Good, Auto digitization), B(Normal, Manual Digitization), C(Bad, Digitization Impossible)
- Error status : Cautions and notifications code have to be considered in Digitization
- Paper type code : 34 Classifications of paper size
- Recording direction : recording direction of time (Left to Right, Right to Left)
- Scale : Assigned code of the cell(grid) size
- Zero point : Location of the value Zero on Y-axis

- Pretreatment (= Normalization)
- ✓ Identifying specification and quality condition of scanned images and cut the image precisely fit for digitization (Exactly 24 hours, both tractor area (upper and lower) removed)
- ✓ Width for the image includes exact 24-hour and Length includes just cell(grid) area of the recording paper.

General Normalization

[before] Original image

[after] Normalized image

- Special Normalization
 - $\checkmark~$ Reverse record normalization
 - Manually convert the reversed graph area to normal direction shown below
 - Three types of reverse direction records , upper , lower , upper and lower

(Converting task performed on the normalization system we own made)

[before] upper reverse record

[after] convert to normal direction

- Special Normalization
 - ✓ Curved Y-Axis type normalization
 - Convert record to rectangular coordinates by curve rate correction
 - Convert curve image to straight line image should be performed systematically by reading curve rate information of each paper.

[after] Curve rate correction

- Graph Extraction
 - ✓ Separate the graph from the background using color saturation difference in the image
 - $\checkmark~$ Background color saturation can adjustable from 1 % to 0.0001 %
 - ✓ Extract the graph by clicking the graph line.

- Digitization
 - ✓ Normal (=Meanline) Digitization
 - Identify the area of extracted graph
 - Digitize the center value from extracted graph for each 1 minute
 - Display the digitized value as a line to see if correct

- ✓ Seiche(=Min-Max) Digitization
 - Seiche's wavelengths are so big and terms are so short that unexpected values were digitized when applying Meanline digitization. Therefore alternative Min-Max value crossing method were developed.
 - Digitize by crossing the maximum and minimum value alternatively for each 1 min.

- Value inspection
- \checkmark Inspect if digitized values are exactly positioned on the center of their raw graph
- \checkmark Retrieve digitized values overlaying with raw image file
- \checkmark Check if the deviated parts from record line's trend were removed
- \checkmark Modify micro errors by the manual operation

Overlay values on the raw image file

Modifying errors

✤ Value inspection

Discrepancy of raw graph and digitized value

Mechanical error inspection

 Check if the record includes any mechanical error such as stop functioning or malfunctioning of the equipment

 \checkmark Tagging these errors on the meta data and verify the reason afterward

Short term stop functioning (absence of observation)

Mechanical error inspection

 \checkmark Time shifting occurs when the clock gradually goes slow or fast

Time shifting

- Referential inspection
- ✓ Compare digitized data with forecasted data and existing hourly tide data

I. Overview

Contents;

- 1. Korean Tide Observation
- 2. Background and purpose
- 3. Scope and Schedule
- II. DB construction Steps
- 1. DB Construction Processes
- 2. Step 1 : Scanning
- 3. Step 2 : Digitizing
- 4. Step 3 : Inspection

III. Achievements

- Expand Coverage of Tidal Information Services
 - \checkmark Historical tide data is provided on the web
 - ✓ Expect significant savings of time and resources for Management , Search, analysis and statistics of tide information
- Infra for Tidal data utilization constructed
- Expect Increased Information utilization through the Digitization of Analog Tide Records
- Improve the accuracy of statistics and Tidal analysis Through the creation of 1 minute Tide Records
- Expect an active exchange of information between Related agencies, academies and Research Groups

- Systematic Achievement
- Systematic Frame Constructed For digitizing analog Tide Observation Records
- ✓ Built an image processing technique for digitizing Tide Observation Records
- Secure digitizing methodology developed for the various types of recording paper and the type of errors

Thank You!